Erratum

Erratum to 'Reactions of (trimethylsilyl)tetramethylcyclopentadiene with (benzene)titanium(II) bis(tetrachloroaluminate). Crystal structures of $\left[\mathrm{C}_{5} \mathrm{Me}_{4}\left(\mathrm{SiMe}_{3}\right)\right] \mathrm{Ti}\left(\mathrm{AlCl}_{4}\right)_{2}$ and $\left\{\left[\mathrm{C}_{5} \mathrm{Me}_{4}\left(\mathrm{SiMe}_{3}\right)\right] \mathrm{Ti}\left(\mathrm{AlCl}_{4}\right)(\mu-\mathrm{Cl})\right\}_{2}$ [J. Organomet. Chem. 552 (1998) 75] ${ }^{\text {1, }}$

Michal Horacek ${ }^{\text {a }}$, Volkmar Kupfer ${ }^{\text {b }}$, Bernhard Muller ${ }^{\text {b }}$, Ulf Thewalt ${ }^{\text {b }}$, Karel Mach ${ }^{\text {a,* }}$
${ }^{\text {a }}$ J. Heyrovsky Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, Dolejskova 3, 18223 Prague 8, Czech Republic
${ }^{\mathrm{b}}$ Sektion für Rontgen- und Electronenbeugung, Universitat Ulm, D-89069 Ulm, Germany

Received 15 June 1998

The publisher regrets that the following paragraph was omitted from page 79 of this paper.
The molecular structure of turquoise compound $\mathbf{3}$ had been determined by the X-ray crystal analysis (vide infra). The EDX measurement gave the Ti:Al:Si ratio equal to $1: 1: 1$ and the chemical analysis afforded the ratio $\mathrm{Ti}: \mathrm{Al}: \mathrm{Cl}$ as 1:1:5. The IR absorption band of the $\left[\mathrm{AlCl}_{4}\right]$ ligand at $490 \mathrm{~cm}^{-1}$ is about twice weaker than the analogous band in 2 when the intensity of the band at $1250 \mathrm{~cm}^{-1}$ is taken as a reference. The silence of the compound in ESR spectroscopy of its toluene solution and the toluene glass indicates that the system of two $\mathrm{Ti}(\mathrm{III}) \mathrm{d}^{1}$ electrons has paired spins. At variance with dimeric titanocene monochlorides $\left[\left(\mathrm{C}_{5} \mathrm{H}_{5-n} \mathrm{Me}_{n}\right)_{2} \mathrm{Ti}(\mu-\mathrm{Cl})\right]_{2}(n=0-2)$ which form the electronic triplet state $[22,23]$ the titanium chloro-bridged dimers containing only one cyclopentadienyl ligand per one Ti center are known to form the diamagnetic singlet state [24,25]. Compounds $\mathbf{2}$ and $\mathbf{3}$ apparently arise form subsequent reactions of $\mathbf{1}$ which is primarily formed in rapid redox reaction (2). The formation of $\mathbf{2}$ requires the replacement of one $\left[\mathrm{AlCl}_{4}\right]$ ligand by one $\mathrm{C}_{5} \mathrm{Me}_{4}\left(\mathrm{SiMe}_{3}\right)$ ligand including the hydrogen transfer from $\mathrm{C}_{5} \mathrm{HMe}_{4}\left(\mathrm{SiMe}_{3}\right)$ to give an elusive complex acid $\mathrm{H}^{+}\left[\mathrm{AlCl}_{4}\right]^{-}$(Eq. (3)).

[^0]
[^0]: * Corresponding author.
 ${ }^{1}$ PII of the original article: S0022-328X(97)00581-0.

